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1. Objective 

Imaging sensors are currently being deployed in large numbers on vehicle systems and will 
likely be deployed in the future on individual Soldiers as well.  These sensors are intended to 
serve many purposes, including target detection and tracking, detection and location of hostile 
fire, navigational aid, and terrain model acquisition.  Information regarding events observed on 
the battlefield is most useful when these events can be accurately localized with respect to some 
larger coordinate system.  Localization allows multiple, non-collocated systems to exchange and 
fuse information, and coordinate their actions.  The first step to localizing observed events is to 
locate the position and orientation*

The goal of our research is to develop and demonstrate efficient and accurate algorithms to 
determine the position and orientation of a camera in an outdoor urban environment using 
camera imagery acquired from a single location on the ground.  The requirement to operate using 
imagery from a single location allows a system using our algorithms to generate instant position 
estimates and ensures that the approach may be applied to both mobile and immobile ground 
sensors.  Localization is accomplished by registering visible ground images to urban terrain 
models that are easily generated offline from aerial imagery.  Provided there are a sufficient 
number of buildings in view of the sensor, our approach provides accurate position and 
orientation estimates, with position estimates that are more accurate than those typically 
produced by GPS. 

 of the observing sensor.  There are many ways to determine 
the position of a sensor in an environment.  These include using a global positioning system 
(GPS), compass, TV or cell phone networks, and landmark recognition from optical or range 
data.  None of these methods will solve the localization problem all of the time:  GPS works best 
in unobscured outdoor environments, but does not provide orientation and is not accurate enough 
for some applications (such as autonomous navigation of unmanned ground vehicles).  Cell 
phone networks can provide indoor and outdoor localization, but are accurate to only 100 m.  
Landmark recognition can give accurate position and orientation, but may be unreliable and 
computationally intense, and require laborious offline terrain modeling.  Some combination of 
these techniques will be needed to robustly solve the battlefield sensor localization problem.  In 
the short term, a system is envisioned that performs localization using a combination of GPS and 
landmark recognition.  GPS, when available, will provide the rough positioning and the 
landmark recognition subsystem will refine that position and fill in the gaps during GPS outages.  
The research described here is focused on localization using visual landmark recognition in 
urban environments. 

                                                 
*Hereafter, for conciseness, the terms position and location will often be used synonymously with the phrase position and 

orientation. 
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2. Approach 

The position of a camera can be determined from objects observed in the scene by recognizing 
landmarks (i.e., immobile objects like buildings, statues, natural features, etc.) and retrieving 
their prerecorded positions from an existing database or terrain model.  Approaches to landmark 
recognition may be broadly classified as either appearance-based or model-based.  Appearance-
based approaches represent objects as collections of two-dimensional (2-D) images.  Model-
based approaches represent objects in terms of some higher level structures (e.g., 2-D or three-
dimensional [3-D] geometric models).  In both approaches, a search is performed to match a new 
image to the model.  Although research in visual landmark recognition has been ongoing for over 
30 years, all existing techniques seem to suffer from at least one of the following problems (2, 
3):  (1) The sensor must have previously observed the scene from similar vantage points for it to 
be recognized; (2) excessive computations are needed to match image data to a terrain model, 
thus limiting real-time operation; (3) accurate localization information cannot be obtained from 
recognized landmarks; and (4) background clutter causes recognition and localization errors.  

Our approach to landmark recognition addresses all of these issues.  We register ground-based 
imagery to a terrain model that is easily created from a single aerial image.  Our terrain model 
consists of a 2-D map of building footprints.  Thus, the sensor does not have to visit an area of 
the terrain previously to localize itself in that terrain.  The location of the camera in the urban 
terrain is determined by estimating, from a single image, the footprints of visible building 
facades and then registering this local footprint to the terrain model.  Both the local footprint 
estimation and the registration steps are fast.  Local building footprint estimation is performed 
using image vanishing points to compute the 3-space orientations on the ground plane of line 
segments detected in an omnidirectional camera image.  In other words, information derived 
from vanishing points is used to identify image line segments that correspond to vertical building 
facades and then used again to project these line segments onto the ground plane.  Given the 
ground plane projections, a vector describing the footprint orientations at equal angles over a 
360° field of regard is computed.  The local footprint orientation (LFO) vector is then matched to 
the 2-D terrain model to determine the camera’s position and orientation.  Each of these steps is 
described in more detail in sections 2.1 through 2.4. 

2.1 Sensors for Air-to-Ground Registration 

As mentioned previously, our terrain model consists of a 2-D map of building footprints.  The 
footprint of a building consists of the projection onto a horizontal plane of all large vertical 
facades of that building.  The building footprints for an urban environment can be created in a 
number of ways.  Numerous approaches for automated building footprint detection exist using 
high-resolution aerial monoscopic visible (0, 0), stereoscopic visible (0–0), and Light Detection 
and Ranging (LIDAR) (0–0) data.  Approaches using LIDAR are currently more robust than 
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those using only optical imagery.  In fact, there is a commercial product named LIDAR 
Analyst™ (0) that automatically extracts building footprints and 3-D computer-aided design 
(CAD) models from high-resolution LIDAR data.  Figure 1 shows some of the outputs of this 
product found on the company’s Web site.  As shown in this figure, it is possible to 
automatically generate accurate building footprint models using existing systems.  However, 
because the focus of this research is on sensor localization and not terrain modeling, we did not 
use any of these existing methods to generate our models, but instead generated our building 
footprint models by hand from single aerial images.  This was a cheap and fast way for us to test 
our method.  A graphical user interface was written that allows the user to easily and quickly 
draw lines on top of an image and save these lines as a terrain model.  Figure 2 shows an 
example of a publically available (from the U.S. Geological Survey) aerial image of part of the 
U.S. Army Research Laboratory (ARL) and the building footprint model that we manually 
generated from that image.   

 

Figure 1.  Visual Learning Systems, Inc., LIDAR Analyst system:  (a) a LIDAR digital elevation model (DEM) (i.e., 
raw LIDAR data), (b) building footprints extracted from the LIDAR DEM, (c) 3-D building models 
generated from DEM, (d) a close-up of a LIDAR DEM of a complex building, and (e) a 3-D model 
generated from DEM of the complex building. 

(a) 

(e) 

(c) 

(d) 

(b) 
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Figure 2.  Aerial image of ARL (left) and the building footprint model manually generated from that  
image (right). 

The system to be localized must possess a sensor that will observe the surrounding environment.  
Because LFO vectors describe building footprints over the full 360° range of viewing, any sensor 
for this purpose that does not have a 360° field of view would need to be panned to cover the full 
range.  A number of different sensors may be used, including a monocular visible camera, a 
stereo visible camera pair, or a LIDAR camera.  As stereo and LIDAR cameras generate range 
directly, they should allow for faster and more accurate calculation of the LFO vectors.  
However, these two sensors are usually only accurate at short ranges.  The monocular visible 
camera has the ability to observe over much longer ranges, but requires significantly more 
processing to generate LFO vectors.  In our research, we use the Point Grey Research, Inc., 
Ladybug®2 spherical camera shown in figure 3.  This digital video camera system consists of six 
0.8 megapixel color charge-coupled device (CCD) image sensors, each with a 2.5-mm focal 
length lens, integrated into a single enclosure.  Five of the cameras are positioned in a horizontal 
ring and one is positioned vertically.  This enables the camera to collect imagery from more than 
75% of the full viewing sphere.  An integrated 12-bit analog-to-digital converter along with an 
IEEE-1394b (FireWire) interface is used to stream full 12 megapixel images at 15 FPS to the 
host system.  This camera system is small (110 mm x 100 mm x 141 mm, L×W×H) and light 
enough (1190 g) to be mounted on a portable robot.  Figure 4 shows a set of six images that were 
simultaneously acquired from the Ladybug camera as it sat on the ground in an outdoor 
courtyard at ARL.  
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Figure 3.  Point Grey Research Ladybug2 
spherical vision camera system. 

 

Figure 4.  Images from the Ladybug camera taken inside the ARL courtyard.  The top image is from the vertical 
camera and the lower five images are from cameras in the horizontal ring.  The pincushion distortion 
effect apparent in these images is a result of warping of the original images (not shown) to correct the 
optical distortions that were present in the original images. 

2.2 Image Vanishing Points 

Optical image formation is usually modeled using perspective projection.  In an idealized 
perspective camera, a point in 3-space is mapped onto an image at the location where a ray 
connecting the center of projection (the lens center) and the 3-space point intersects the image.  
Optical aberrations such as focus and lens distortion cause deviations from this model, but these 
effects can be accounted for via standard camera calibration techniques.  The planar perspective 
image x of a 3-space point X can be modeled as 
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 [ ]X0x IK= , (1) 

where x and X are the homogeneous representations of the image and 3-space points†

 

, 
respectively; I is the 3x3 identity matrix; 0 is the length three column zero vector; and K is the 
camera calibration matrix. 
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Equation 1 makes the assumption that the 3-space coordinates of X are given in the camera 
frame of reference.  The parameters of the camera calibration matrix are xα  and yα , the focal 
lengths in the horizontal and vertical directions, respectively; s, the axis skew; and 0x  and 0y , 
the position of the optical axis on the image plane (1). 

Under perspective projection, an infinitely long line in the world can have a finite extent in the 
image; the image of the point at infinity on this line is called the line’s vanishing point.  Parallel 
lines in the world that are not parallel to the image plane will be imaged as converging lines that 
intersect at a single finite vanishing point.  When image points and lines are represented using 
homogeneous coordinates, the image of any set of parallel world lines, whether or not they are 
parallel to the image plane, will intersect at a common vanishing point.  This point may be a 
point at infinity, but these points are treated identically to finite vanishing points.  Figure 5 shows 
the image of an urban environment with some parallel world lines and their vanishing points 
identified. 

 

Figure 5.  The image of parallel 3-space world lines intersecting at a common vanishing point in the image.  
Vanishing points (shown as colored dots in this figure) may lie inside or outside the image.  The blue lines 
intersect at a point high above the image.  

                                                 
†Homogeneous coordinates are used throughout this report to represent image and 3-space points. 
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The 3-space direction of a line relative to the camera reference frame may be determined from 
the line’s vanishing point as follows.  The line through the 3-space point A with direction 

TT )0,(dD =  ( 0dd ≠∈ ,3R ) may be represented as the set of points with homogeneous coordinates 
( ) DAX λλ += .  From equation 1, the image of point ( )λX  is  

 
 ( ) [ ] [ ] dad0A0x K)0,(IKIK TT λλλ +=+= , (3) 

where a is the image of the point A.  The vanishing point v of the line is then  

 

 ( ) ( ) ddaxv KKlimlim =+==
∞→∞→

λλ
λλ

. (4) 

Thus, given the vanishing v point of a 3-space line and the camera calibration matrix K, the 
3-space direction of the line is  

 vd -1K=  (5) 

and the projection onto a ground plane with unit normal 3R∈n  is  

 ( )( )nnvvd ⋅−=′ -1K . (6) 

2.3 Estimating the 3-space Orientation of Image Lines 

The first step in our approach to estimating the 3-space orientations of image line segments is to 
detect the vanishing points in the image.  Vanishing points are detected as follows.  The Canny 
edge detector (14) with hysteresis thresholding is first applied to generate a binary image of the 
edge points (figure 6b).  Straight line segments are then extracted from this edge image by 
linking edges into contours (figure 6c) and then splitting the contours into straight segments (15).  
The final line segments are those whose sum of squared distances to the contour points are 
minimized and whose length is at least 5 pixels long (figure 6d). 
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Figure 6.  Image processing for straight line segment detection: (a) original image, (b) Canny edges, (c) edge 
contours, and (d) straight line segments fit to contours. 

(a) 

(d) (c) 

(b) 
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Each line segment iL  is identified by its two endpoints:  ( ) ( ){ }2211 ,,, iiiii yxyxL = .  For efficiency in 
computing the image vanishing points, for each line segment iL  we compute the normalized 
homogeneous representation of the coincident infinite line, il ; the endpoints, 1

ie  and 2
ie ; and the 

midpoint, im .  These are calculated according to 
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 (7) 

The Random Sample Consensus (RANSAC) algorithm (16) is then applied several times to the 
above data; each trial is used to locate the single vanishing point with the most support.  Before 
each new trial, the data supporting the vanishing point found in the previous trail are removed.  
This process is repeated until Vmax = 4 vanishing points are found, or until the size of the largest 
consensus set is less than Smin = 20.  On each trial of RANSAC, T=50, random samples of line 
pairs are examined.  The line pair il  and jl  seeds a potential vanishing point ijv  when the line 

segments Li and Lj are each at least Hseed = 15 pixels long and when their angle is no longer than 
40seed =Θ .  The initial vanishing point of the line pair is jiij llv ×= .  The normalized line 

through ijv  and the midpoint of line segment kL  is given by ( ) ( )22 21 ijkijkijkijk llll ′+′′= , where 

kijijk mvl ×=′ .  Then, line segment kL  is considered to support ijv  and is added to the consensus 
set ijC  when the perpendicular distance, 1

kijkijkd el ×= , from one endpoint 1
ke  of kL  to ijkl  is no 

larger than 3sup =D pixels and when the angle between these lines is no larger than 3sup =Θ .  All 

line segments in the largest consensus set are used to estimate the final location of the vanishing 
point, *v .  *v  is required to minimize the weighted sum, for all lines tL  in the consensus set, of 
the squared distance of line segment end points to the line through *v  and tm . *v  is found using 
standard nonlinear optimization routines.  Figure 7 shows the results of using this algorithm to 
classify the 3-space orientation of the line segments detected in the image of figure 6a. Figure 8 
shows the same results for the six Ladybug camera images shown in figure 4 
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Figure 7.  Results of using the vanishing point algorithm to 
classify the 3-space orientation of the line segments 
detected in the image of figure 6a. All lines of the 
same color have the same 3-space orientation. 

 

Figure 8.  Line segments are detected in the ARL courtyard images from figure 4 and are color coded 
(independently in each image) based on the estimated orientation of the associated 3-space line. 
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In a typical urban environment, building facades are planar and orthogonal to the ground plane.  
Furthermore, markings on most building facades consist of two sets of orthogonal 3-space lines, 
one set that is orthogonal to the ground plane and one set that is parallel to the ground plane.  
The vanishing point of the set that is orthogonal to the ground plane determines the vertical 
orientation of the camera relative to the ground plane.  The vanishing points of 3-space lines that 
are parallel to the ground plane determine the orientations of the respective façades when 
projected down onto the ground plane.  An omnidirectional camera (the Ladybug) is used to 
ensure that the vertical vanishing point will be detected.  This is essential in order to determine 
the orientation of the ground plane and, from this, the orientation of building facades.  The 
vertical vanishing point is identified as the vanishing point whose position is nearest to the center 
of the overhead image from the set of six Ladybug images.  This vanishing point defines the 
ground plane normal, n. Given n, the orientation of the projection onto the ground plane of any 
classified line segment is computed according to equation 6. 

2.4 Position Estimation 

For a calibrated camera (i.e., a camera where the camera calibration matrix in equation 2 is 
known), every pixel in the image corresponds to a specific horizontal and vertical viewing angle.  
All image line segments whose ground plane orientation was determined, as described in the 
previous subsection, are used to estimate the local building footprint.  For each horizontal 
viewing angle, the orientation of the building footprint in that direction is assigned the dominant 
orientation of all classified line segments in that direction.  The LFO vector consists of the 
dominant orientation for 36 directions equally spaced over the 360° viewing plane.  For each 

{ }  380,,20,10,0∈θ , the average is computed over all viewing directions in the range 
]5,5[  +− θθ .   

Given the position of a camera with respect to the building footprint terrain model, the LFO 
vector is computed similarly to the process described in the previous paragraph, except the 
terrain model is used to compute the ground plane orientations instead of the image line 
segments.  If the ray from the given position and in the specific viewing direction intersects a 
building footprint, then this angle (which is in the range 0 to 180°) defines the building footprint 
orientation in that viewing direction.  If the ray does not intersect and building footprint, then a 
value of 0 is assigned.  This process is illustrated in figure 9 for a region of the building footprint 
map illustrated in figure 2.   
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Figure 9.  Computation of the LFO vector for the location in the building footprint terrain model marked with the 
blue dot.  Thirty-six footprint orientations are assigned from 36 equally spaced viewing directions (left).  
For each of these viewing directions, the ground plane orientation is computed as the average over all 
3-space line orientations that are intersected by a ray within 5° of the given viewing direction.  One such 
viewing direction is shown in the right image. 

To determine the position and orientation of a camera from its omnidirectional images, we first 
process the images as described previously to generate the camera’s LFO vector.  This vector is 
then matched to those in the building footprint terrain model using a gradient descent or some 
other similar optimization scheme.  The estimated location of the camera may be used, if 
available, to initialize this search. 

3. Results 

Because software has not been completed to integrate all components of our algorithm, we 
evaluated the approach using a simulation.  We assumed that, at any location in the terrain 
model, our image processing algorithms were able to correctly estimate, to a small error, 90% of 
the 36 elements of the LFO vector.  That is, 10% of the 36 elements of any LFO vector were 
assigned random values ranging from 0 to 180°.  Furthermore, we assumed that the correctly 
estimated values had errors that were normally distributed with a mean of 0° and a standard 
deviation of 5°.  Figures 10 and 11 show the true and estimate location of a camera for two 
different trials.  In all experiments, the localization error was less than 0.5 m. The color at any 
point in these figures is proportional to the difference between the estimated LFO vector and the 
LFO vector at that point.  This gives an indication of shape of the error surface and shows how 
close the initial guess must be to the true position in order for the algorithm to find an answer 
that is close to the true position of the camera.  It can be seen that the error surfaces are smooth 
with fairly large basins of attraction.  Thus, the local optimization algorithm usually found very 
good solutions.  Note also, that the global minimum (over the entire region of the terrain model) 
is always very close to the true position of the camera (this was the case for all experiments that 
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we ran with the above-given parameters).  Because the search space was at most 3-D (two 
dimensions for x and y position, and one dimension for orientation, if it is not known), it was 
easy and fast to perform a global search over a large region of the terrain model.  This enables an 
even larger basin of attraction to the near-optimal solution. 

 

Figure 10.  True and estimated camera position for ARL courtyard experiment 1.  The localization error 
is approximately 0.5 m. 
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Figure 11.  True and estimated camera position for ARL courtyard experiment 2.  The localization error 
is approximately 0.5 m. 

4. Conclusions 

We have described an efficient algorithm to determine the position and orientation of a camera in 
an outdoor urban environment using camera imagery acquired from a single location on the 
ground.  The location of the camera in the urban terrain is determined by estimating, from a 
single image, the footprint of visible building facades and then registering this local footprint to 
the terrain model.  Both the local footprint estimation and the registration steps are fast.  Local 
building footprint estimation is performed using image vanishing points to compute the 3-space 
orientations on the ground plane of line segments detected in an omnidirectional camera image.  
The local footprint orientation vector is then registered to the 2-D terrain model to determine the 
camera’s position and orientation.  

Based on initial experiments, we believe our approach is an order of magnitude more accurate 
than commercial GPS and it can be implemented to run in real time using modest processor 
resources.  These qualities make the approach suitable for many applications of small platforms 
operating in GPS-denied urban environments such as navigation, mapping, and surveillance.  
Remaining work includes completing the real-time software implementation and evaluating the 
approach in real-world field exercises. 
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6. Transitions 

We plan to transition this software to the Communications-Electronics Research Development 
and Engineering Center (CERDEC)/Night Vision and Electronic Sensors Directorate (NVESD) 
in support of the Sensor Mobility and Perception Technology Program Annex (TPA) (No. CE-
CI-2008-05) and to the Safe Operations of Unmanned systems for Reconnaissance in Complex 
Environments (SOURCE) Army Technology Objective (ATO). 
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List of Symbols, Abbreviations, and Acronyms 

2-D two-dimensional  

3-D three-dimensional  

ARL U.S. Army Research Laboratory  

ATO Army Technology Objective 

CAD computer-aided design  

CCD charge-coupled device  

CERDEC Communications-Electronics Research Development and Engineering Center  

DEM digital elevation model  

GPS global positioning system  

LFO local footprint orientation 

LIDAR Light Detection and Ranging 

NVESD Night Vision and Electronic Sensors Director/Directorate  

RANSAC  Random Sample Consensus 

SOURCE Safe Operations of Unmanned systems for Reconnaissance in Complex 
Environments  

TPA Technology Program Annex  
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 1 ADMNSTR 
 ELEC DEFNS TECHL INFO CTR 
  ATTN  DTIC OCP 
  8725 JOHN J KINGMAN RD STE 0944 
  FT BELVOIR VA 22060-6218 
 
 1 CD US ARMY RSRCH LAB 
  ATTN  RDRL CIM G  T  LANDFRIED 
  BLDG 4600 
  ABERDEEN PROVING GROUND MD  
  21005-5066 
 
 3 CDS US ARMY RSRCH LAB 
  ATTN  IMNE ALC HRR  
  MAIL & RECORDS MGMT 
  ATTN  RDRL CIM L TECHL LIB 
  ATTN  RDRL CIM P TECHL PUB  
  ADELPHI MD 20783-1197 
 
 7 HCS US ARMY RSRCH LAB 
  ATTN  RDRL CII A   
  P DAVID (5 HCS) 
  S YOUNG 
  N FUNG 
  ADELPHI MD 20783-1197 
 
TOTAL: 12 (1 ELEC, 7 HCS, 4 CDS) 
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